121 research outputs found

    Improved efficiency of tocotrienol extraction from fresh and processed latex

    Get PDF
    Vitamin E, mainly in the form of tocotrienols, was extracted from Hevea brasiliensis latex with organic solvents. The content of tocotrienols and a small amount of tocopherols recovered from the latex was determined using high performance liquid chromatoghraphy (HPLC). Gas chromatoghraphy-mass spectrometry (GC-MS) confirmed the identities of the tocotrienols and tocopherols forms that were present. Gamma-tocotrienol was the most abundant form of vitamin E in Hevea latex. The yield of tocotrienols (339 ug/g of latex) was significantly increased by the use of the detergant Triton X-100 in the extraction procedure. This method improves the extraction efficiency by 83%. Through drying of the organic fraction using anhydrous magnesium sulphate following phase separation was also advantageous in the extraction procedure. On the other hand, the presence of ammonia in latex suspension reduced extraction efficiency. Vitamin E was also found in the waste serum generated from the processing of deproteinised natural rubber (DPNR). Although the yield vitamin from this source was relatively low, there is a potential to modify the processing procedure another value added end product i.e. latex vitamin E in addition to DPNR

    5-Fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells

    Get PDF
    Cellulose and chitosan with remarkable biocompatibility and sophisticated physiochemical characteristics can be a new dawn to the advanced drug nano-carriers in cancer treatment. This study aims to synthesize layer-by-layer bionanocomposites from chitosan and rice straw cellulose encapsulated 5-Fluorouracil (CS-CF/5FU BNCs) using the ionic gelation method and the sodium tripolyphosphate (TPP) cross-linker. Data from X-ray and Fourier-transform infrared spectroscopy showed successful preparation of CS-CF/5FU BNCs. Based on images of scanning electron microscopy, 48.73 ± 1.52 nm was estimated for an average size of the bionanocomposites as spherical chitosan nanoparticles mostly coated rod-shaped cellulose reinforcement. 5-Fluorouracil indicated an increase in thermal stability after its encapsulation in the bionanocomposites. The drug encapsulation efficiency was found to be 86 ± 2.75%. CS-CF/5FU BNCs triggered higher drug release in a media simulating the colorectal fluid with pH 7.4 (76.82 ± 1.29%) than the gastric fluid with pH 1.2 (42.37 ± 0.43%). In in vitro cytotoxicity assays, cellulose fibers, chitosan nanoparticles and the bionanocomposites indicated biocompatibility towards CCD112 normal cells. Most promisingly, CS-CF/5FU BNCs at 250 µg/mL concentration eliminated 56.42 ± 0.41% of HCT116 cancer cells and only 8.16 ± 2.11% of CCD112 normal cells. Therefore, this study demonstrates that CS-CF/5FU BNCs can be considered as an eco-friendly and innovative nanodrug candidate for potential colorectal cancer treatment

    An integrated analysis of molecular aberrations in NCI-60 cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer is a complex disease where various types of molecular aberrations drive the development and progression of malignancies. Large-scale screenings of multiple types of molecular aberrations (e.g., mutations, copy number variations, DNA methylations, gene expressions) become increasingly important in the prognosis and study of cancer. Consequently, a computational model integrating multiple types of information is essential for the analysis of the comprehensive data.</p> <p>Results</p> <p>We propose an integrated modeling framework to identify the statistical and putative causal relations of various molecular aberrations and gene expressions in cancer. To reduce spurious associations among the massive number of probed features, we sequentially applied three layers of logistic regression models with increasing complexity and uncertainty regarding the possible mechanisms connecting molecular aberrations and gene expressions. Layer 1 models associate gene expressions with the molecular aberrations on the same loci. Layer 2 models associate expressions with the aberrations on different loci but have known mechanistic links. Layer 3 models associate expressions with nonlocal aberrations which have unknown mechanistic links. We applied the layered models to the integrated datasets of NCI-60 cancer cell lines and validated the results with large-scale statistical analysis. Furthermore, we discovered/reaffirmed the following prominent links: (1)Protein expressions are generally consistent with mRNA expressions. (2)Several gene expressions are modulated by composite local aberrations. For instance, CDKN2A expressions are repressed by either frame-shift mutations or DNA methylations. (3)Amplification of chromosome 6q in leukemia elevates the expression of MYB, and the downstream targets of MYB on other chromosomes are up-regulated accordingly. (4)Amplification of chromosome 3p and hypo-methylation of PAX3 together elevate MITF expression in melanoma, which up-regulates the downstream targets of MITF. (5)Mutations of TP53 are negatively associated with its direct target genes.</p> <p>Conclusions</p> <p>The analysis results on NCI-60 data justify the utility of the layered models for the incoming flow of cancer genomic data. Experimental validations on selected prominent links and application of the layered modeling framework to other integrated datasets will be carried out subsequently.</p

    5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment

    Get PDF
    Magnetic polymer nanocomposites are inherently multifunctional and harbor assorted physiochemical actions for applications thereof as novel drug nanocarriers. Herein, Fe3O4-nanoparticles were supported on rice straw cellulose for 5-fluorouracil carrier abbreviated as MC/5-FU for potential colorectal cancer treatments. Several analyses indicated the multifunctional properties of MC/5-FU bionanocomposites. Transmission and scanning electron microscopy study demonstrated that Fe3O4 nanofillers covered the cellulose matrix. The drug release from MC/5-FU was evaluated under various pH and temperature conditions, showing the maximum release at pH 7.4 and 44.2 °C. In in vitro anticancer assay, MC/5-FU exhibited enhanced selectivity and anticancer actions against 2D monolayer and 3D tumour spheroid models colorectal cancer cells. The anticancer effects of MC/5-FU with magnetic targeting and heat induction were also examined. This easily synthesized MC/5-FU indicated the potential in application as a low-cost drug formulation for colorectal cancer treatments

    Multiplicity: an organizing principle for cancers and somatic mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of whole-genome analysis for profiling tumor tissue, a pressing need has emerged for principled methods of organizing the large amounts of resulting genomic information. We propose the concept of multiplicity measures on cancer and gene networks to organize the information in a clinically meaningful manner. Multiplicity applied in this context extends Fearon and Vogelstein's multi-hit genetic model of colorectal carcinoma across multiple cancers.</p> <p>Methods</p> <p>Using the Catalogue of Somatic Mutations in Cancer (COSMIC), we construct networks of interacting cancers and genes. Multiplicity is calculated by evaluating the number of cancers and genes linked by the measurement of a somatic mutation. The Kamada-Kawai algorithm is used to find a two-dimensional minimum energy solution with multiplicity as an input similarity measure. Cancers and genes are positioned in two dimensions according to this similarity. A third dimension is added to the network by assigning a maximal multiplicity to each cancer or gene. Hierarchical clustering within this three-dimensional network is used to identify similar clusters in somatic mutation patterns across cancer types.</p> <p>Results</p> <p>The clustering of genes in a three-dimensional network reveals a similarity in acquired mutations across different cancer types. Surprisingly, the clusters separate known causal mutations. The multiplicity clustering technique identifies a set of causal genes with an area under the ROC curve of 0.84 versus 0.57 when clustering on gene mutation rate alone. The cluster multiplicity value and number of causal genes are positively correlated via Spearman's Rank Order correlation (<it>r<sub>s</sub></it>(8) = 0.894, Spearman's <it>t </it>= 17.48, <it>p </it>< 0.05). A clustering analysis of cancer types segregates different types of cancer. All blood tumors cluster together, and the cluster multiplicity values differ significantly (Kruskal-Wallis, <it>H </it>= 16.98, <it>df </it>= 2, <it>p </it>< 0.05).</p> <p>Conclusion</p> <p>We demonstrate the principle of multiplicity for organizing somatic mutations and cancers in clinically relevant clusters. These clusters of cancers and mutations provide representations that identify segregations of cancer and genes driving cancer progression.</p

    A Flexible Approach for Highly Multiplexed Candidate Gene Targeted Resequencing

    Get PDF
    We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies

    Unveiling Protein Functions through the Dynamics of the Interaction Network

    Get PDF
    Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes

    MC EMiNEM Maps the Interaction Landscape of the Mediator

    Get PDF
    The Mediator is a highly conserved, large multiprotein complex that is involved essentially in the regulation of eukaryotic mRNA transcription. It acts as a general transcription factor by integrating regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The internal network of interactions between Mediator subunits that conveys these signals is largely unknown. Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies between proteins that have pleiotropic effects on mRNA transcription. MC EMiNEM is based on Nested Effects Models (NEMs), a class of probabilistic graphical models that extends the idea of hierarchical clustering. It combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM) algorithm for NEMs to increase sensitivity compared to existing methods. A meta-analysis of four Mediator perturbation studies in Saccharomyces cerevisiae, three of which are unpublished, provides new insight into the Mediator signaling network. In addition to the known modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering of its internal information flow, which is putatively transmitted through structural changes within the complex. We identify the N-terminus of Med7 as a peripheral entity, entailing only local structural changes upon perturbation, while the C-terminus of Med7 and Med19 appear to play a central role. MC EMiNEM associates Mediator subunits to most directly affected genes, which, in conjunction with gene set enrichment analysis, allows us to construct an interaction map of Mediator subunits and transcription factors

    Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution

    Get PDF
    The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1) removes a significant, non-coevolutionary bias and 2) accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations

    Inferring cellular networks – a review

    Get PDF
    In this review we give an overview of computational and statistical methods to reconstruct cellular networks. Although this area of research is vast and fast developing, we show that most currently used methods can be organized by a few key concepts. The first part of the review deals with conditional independence models including Gaussian graphical models and Bayesian networks. The second part discusses probabilistic and graph-based methods for data from experimental interventions and perturbations
    corecore